
BY L IONEL B.  DYCK 

REXX is a popular programming language that
Michael Cowlishaw of IBM developed for

the VM environment. The language was ported to MVS and
OS/2, and today you can find versions of REXX for most
platforms. There is also NetRexx, which can generate Java
and Object REXX if you are into objects. Additionally,
there is object-oriented (OO) REXX.

The definitive book for REXX beginners
is The REXX Language by M.F.
Cowlishaw (ISBN 0-13-780735-X
Prentice-Hall, 1985, ISBN 0-13-
780651-5 second edition, 1990).
Note that on OS/390 the IBM
softcopy publications are excellent
reference guides.

THE BASICS

OS/390 REXX is a procedural
language with a simple syntax. With
most programming languages you have to
spend a great deal of time learning the coding
style rules, where to put parentheses, when to use
brackets, how to use quotes (single or double), how to
comment, and how to continue a statement across multiple
records. With REXX, you will learn these things in less time
than it takes to learn when to use braces in C or C++.

Note that OS/390 REXX is also an interpretive language.
There is no compile, link, or execute required. Just put the
REXX program in the proper DD concatenation and execute
it. Although there are several REXX compilers available,
including one from IBM, this article will not address them.

The goal of this article is to teach you how to code in
REXX by demonstrating how to actually code a simple
REXX program that will:

● obtain a list of all members of a partitioned data set
● read each member
● report on each member that contains a specific string

Figure 1 shows the entire REXX code sample for this
demonstration.

THE FIRST STATEMENT

The first statement in any REXX
program should be a comment contain-
ing the word “REXX”. This comment
line is a standard in OS/390 REXX
that lets the REXX program be
included in the SYSPROC or the
SYSEXEC DD concatenation.
Figure 2 shows an example of valid

first statements.

COMMENTS

Comments in REXX appear between the
slash asterisk (/*) and the asterisk slash (*/). These

delimiters can appear on the same record or you can separate
the delimiters by multiple records.

Note: You can include additional slash asterisks (/*) within a
comment; however, when the system encounters the first
slash asterisk (*/), it ends your comment.

As shown in Figure 2, the first statement is just a comment.

HINT

Under ISPF Edit, enter Hilite and a pop-up panel appears.
I like to set the language type explicitly to REXX. I set

An Introduction to REXX for
OS/390 Users

This article provides an OS/390 user with the necessary information to code a simple REXX
program and to use the provided IBM documentation to build complex applications in REXX.

Additionally, the author demonstrates how to write a program in REXX to read every member of
a PDS and report on every member that contains a particular string.

TECHNICAL SUPPORT • MARCH 2001

Note that OS/390
REXX is also an

interpretive language.
There is no compile,

link, or execute required.
Just put the REXX program

in the proper DD
concatenation and

execute it.

©2001 Technical Enterprises, Inc. Reproduction of this document without permission is prohibited.



coloring to 3 so that both the IF and DO
logic are colored. I then place a slash (/)
next to each of the following: parentheses
matching, highlight FIND strings, and
highlight cursor phrase. This will make
coding easier, as it will hilite any mismatched
quotes and/or comments.

PICKING UP ARGUMENTS FROM
THE COMMAND LINE AND
VARIABLE NAMES

A REXX program executes like a CLIST
because the user can specify options when
issuing the command. For this program, you
can specify two options: the name of the
partitioned data set and the name of the
string to report on. The code to capture the
options is as follows:

Arg pds_dsname string

The ARG instruction tells REXX to access
the command line arguments, and
pds_dsname and string are the variables
where you place the arguments. A variable
name can be anything that begins with an
alphabetic or national character (for
example, $@#!?_) but not a number. The
name can contain any alphanumeric or
national character. I will discuss other variable
naming conventions, including the stem
variables, later.

Once you place the arguments into the
variables, you need to verify the existence
of both arguments. Figure 3 shows the code
for verification.

Statements 1 and 7 are IF statements
which test the variable for a null (“”).
Statements 2 and 8 are THEN statements
that follow the IF to indicate that some
action will be performed. The DO statement
indicates processing for a single pass DO
loop. The DO loop ends with the END
statement (statements 6 and 12). Within the
DO loops, the SAY instruction writes output
to the screen consisting of whatever follows.
Statements 5 and 11 cause the REXX pro-
gram to terminate immediately with a return
code of 8. The indentation is not critical to
REXX but is helpful to the human coder
and reader.

VARIABLES AND LITERALS

By default, variables will be the value of
the variable name. Thus, a variable name
of pds_dsname will have a default value of
PDS_DSNAME. Literals are any character

string in either single or double quotes.
Note that the case of the variable name is
not relevant.

TESTING THE VALIDITY OF THE
INPUT PDS

Next, it is helpful to verify that the input
pds provided is a valid data set name. You
can use the code shown in Figure 4 to do
your verification.

Statement 1 uses the SYSDSN function,
which uses a parameter of the input data set
name to test if the data set exists. The <> is
the same as saying, “not equal,” and the test
is for a literal of OK. If the result of the
SYSDSN test is not equal to OK, then a DO
Loop is executed.

Statement 2 issues an error message
starting with the literal of “Error:” fol-
lowed by the input data set name. The
results of the SYSDSN function call follow,

TECHNICAL SUPPORT • MARCH 2001

/* — — — — — — — — — — —  rexx procedure  — — — — — — — — — — — *
* Name:      DoAll                                *
* Syntax: %DOALL pds string                   *
* — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — */

arg pds_dsname string

If pds_dsname = “”
Then do

Say “Error. No arguments entered.”
Say “Ending.”
Exit 8
End

If string = “”
Then do

Say “Error. No program name entered.”
Say “Ending.”
Exit 8
End

if sysdsn(pds_dsname) <> “OK” then do
say “Error:” pds_dsname sysdsn(pds_dsname)
exit 8
end

call outtrap “trap.”

“LISTD” pds_dsname “MEMBERS”

call outtrap “off”

do i = 1 to trap.0
if trap.i = “—MEMBERS—” then leave
end

call listdsi pds_dsname        
dsname = sysdsname

i = i + 1
do j = i to trap.0

parse value trap.j with  mem
mem = strip(mem)
say “Checking Member:” 
“Alloc f(xxin) ds(‘“dsname”(“mem”)’) shr reuse”
“Execio * diskr xxin (finis stem in.”
“Free  f(xxin)”
hit = 0
do z = 1 to in.0

if pos(string,in.z) > 0
then hit = 1

end
if hit = 1 then

say “Found in Member:” mem
end

FIGURE 1: COMPLETE REXX PROGRAM SOURCE

/* rexx */
/* program.exec - a rexx program */
/* program.exec - a rexx program

that does something */

FIGURE 2: VALID FIRST STATEMENTS

©2001 Technical Enterprises, Inc. Reproduction of this document without permission is prohibited.



which provide a short phrase describing
the error.

Statement 3 will exit the REXX program
with a return code of 8, and Statement 4
ends the DO Loop.

GETTING THE LIST OF
PDS MEMBERS

To process every member of a partitioned
data set you will use the TSO command
LISTD. This code segment will demonstrate
the use of a TSO command, the use of the
OUTTRAP instruction to capture output
normally written to the TSO screen, a some-
what more complex DO loop, the use of the
PARSE instruction, the use of stem variables,
and the use of the CALL instruction. The
OUTTRAP instruction is shown in Figure 5.

The first statement in Figure 5 calls the
OUTTRAP REXX function. The parameter
to OUTTRAP is the stem where you place
all trapped records. OUTTRAP can capture
or trap anything written using a PUTLINE
instruction, which many TSO commands use.

In Statement 2, execute the LISTD TSO
command, which is enclosed in quotes to
indicate it is a literal. The REXX interpreter
will try to execute LISTD TSO as a TSO
command because it is a statement of its
own. The first parameter to LISTD is the
name of the data set to process and the
second parameter is the literal MEMBERS
to tell LISTD to list all members.

Statement 3 calls OUTTRAP again with
the instruction to cease trapping output.

Statement 4 is a DO LOOP that uses the
variable “i”, setting it to 1 to start with and pro-
cessing until “i” is the same as the value in
trap.0. The variable “i” is incremented by one
until it matches the value in trap.0. OUTTRAP
places the number of records captured into the
.0 stem value. Stem trap.1 would be the first
real record, trap.2 the next, and so forth.

Statement 5 looks for the string “—
MEMBER—” in position 1 of the trapped
record, as the member names start on the
record immediately after this record. If the
program has the LEAVE instruction, it will
cause the current loop to terminate. When
the DO loop terminates, the value of “i” will
be the same as the record where the “—
MEMBER—” string was found.

FIXING UP THE PDS DSNAME

The provided partitioned data set name
now needs to be fixed so that the code can

support either a fully qualified data set
name (one enclosed in quotes) or a partially
qualified data set name. A partially qualified
data set name requires that the user TSO
PREFIX be appended to the data set name.
The quickest way to do this is to use the
LISTDSI function as follows:

1. call listdsi pds_dsname
2. dsname = sysdsname

Statement 1 is the call of LISTDSI with a
single parameter of the PDS data set name.
LISTDSI has many options and other capa-
bilities. LISTDSI will create a number of
variables related to the data set. Check the
documentation for the complete list.

Statement 2 sets the variable dsname
with the fully qualified, but without
quotes, data set name as returned from the
LISTDSI function.

PROCESS THE MEMBERS

Figure 6 shows the code to process the
members. Notice the indentation here, so
that the statements within a specific DO
LOOP are easily identifiable. This is a
matter of style, and you should find a com-
fortable style for coding that is easily
readable by others who may inevitably be
maintaining this code.

Statement 1 increments the variable “i”
by one. You can specify the variable “i”
either in upper- or lower-case because it
refers to the exact same variable. The vari-
able “i” is incremented because it was last
set with the record number of the record
with the literal string “MEMBERS”. This
increment points to the next record from the
LISTD results, which contain the first mem-
ber name.

Statement 2 is a DO Loop using the vari-
able J as the counter and counting from I to
the value in trap.0, which is the number of
records that were captured by the OUT-
TRAP function.

Statement 3 uses the PARSE function to
extract the member name from the current
record.

Statement 4 uses the REXX Strip func-
tion to remove leading and trailing blanks
from the mem variable. The current record
is found in trap.j, where j is the current
record count of interest when working
with the counter in the DO Loop.

PARSE is a very powerful function of
REXX. In this case, the PARSE VALUE
format tells REXX to parse using the Value
of trap.j and separate that value into vari-
able(s) mem.

Note that PARSE has a lot of other
capabilities, including allowing multiple
variables to be used which will take each
distinct set of characters, separated by
blanks, and insert the set into a respective
variable. Since this example only specifies
one variable, mem, this is where the first
set of characters belong (in this case only).

To fully understand PARSE, refer to the
publications listed in the References section
at the end of this article.

Statement 5 uses the SAY function to
inform the user on the screen about the pro-
cessing status of the member name.

Statement 6 is the TSO command Alloc.
Note that the command is defined as a liter-
al as are all the keywords for Alloc. The
only variables are the dsname and mem.
Note the use of the double quotes to define
the literals, leaving the single quote for
use in qualifying the data set name.

Statement 7 is the REXX function EXE-
CIO, which lets you read and write files.
EXECIO does the following:

● the * indicates to process all records

● the diskr indicates to Read the records
from disk

● the xxin is the DD Name where the
records will be read from

TECHNICAL SUPPORT • MARCH 2001

1. If pds_dsname = “”
2.    Then do
3.    Say “Error. No arguments entered.”
4.    Say “Ending.”
5.    Exit 8
6.    End
7. If string = “”
8.    Then do
9.    Say “Error. No string entered?”
10. Say “Ending.”
11. Exit 8
12. End

FIGURE 3: CODE TO VERIFY ARGUMENTS 

©2001 Technical Enterprises, Inc. Reproduction of this document without permission is prohibited.



● the parentheses indicate additional parameters for EXECIO
to follow

● the finis keyword indicates to close the DD when the
EXECIO finishes

● the stem indicates that the records are to be read into a
stem variable

● the in. is the stem variable

As you can see with this simple example, the EXECIO is a very
powerful function. Check out the References section for more
information on EXECIO.

Statement 8 is the TSO command Free, which releases the
allocation created in the Alloc command.

Statement 9 sets the variable hit to zero.
Statement 10 is the DO Loop that will process the member that

has just been read into the in. stem variable using the variable z as
the counter.

Statement 11 is a test. If the position of the value in the variable
string is found in the text of the variable in.z at position greater than
0, then the variable hit is set to 1.

The Position function (POS) finds the relative position of the first
string within the second string. A result of 0 (relative position 0)
indicates that there was no match. As you can see from this
statement, the THEN can be included on the same record. The
THEN keyword indicates that when the previous test is true, THEN
executes the following function (which may be a single function, a
larger function, or a larger function contained within the DO/END
or SELECT/END function).

Statement 12 is the END of the DO Loop started in Statement 10.
Statement 13 tests the variable hit for a value of 1. If the value is

1, then Statement 14 is processed, which uses the SAY function to
tell the user on the screen that string searched for was found in the
member currently being processed.

Statement 15 is the END of the DO Loop started in Statement 2.

CONCLUSION

I hope that this article has whetted your appetite for coding in
REXX. As you can see, it is a very simple, yet very powerful
language. A good source to learn about REXX is to look at REXX
code from others. You can find a number of useful examples at my
web site as well as on the CBT Tape web site, which contains
several hundred files, several of which contain REXX code.

With REXX you can write ISPF dialogs, query DB2 databases,
process SMF records, do involved math, access storage locations,
and more using both standard functions provided with REXX or
add-on functions provided with various products (e.g., ISPF). You
can use REXX on many different platforms. The basic REXX
language on OS/390 is an interpretive language; however, if you
need the performance improvements of a compiled language there
are several REXX compilers available.

REXX is a full language that I am sure you will find a place for
in your toolkit.

REFERENCES

The following are excellent resources for finding out more
information about REXX:

◆ The IBM OS/390 Softcopy Web Server:
www.s390.ibm.com/os390/bkserv/

◆ The REXX Language Association: www.rexxla.org
◆ The IBM REXX home page: www2.hursley.ibm.com/rexx/
◆ Lionel Dyck’s home page: www.geocities.com/lbdyck
◆ Dave Alcock’s web site:

www.planetmvs.com/freeware/fwrexx.html
◆ CBT Tape: Accessible using www.naspa.com

NaSPA member Lionel Dyck is a lead MVS sys-
tems programmer for a large HMO in
California. He has been in systems program-
ming since 1972, and has written numerous
ISPF dialogs over the years. He is an active
member of NaSPA and SHARE, and can be

reached via email at Lionel.B.Dyck@kp.org.

TECHNICAL SUPPORT • MARCH 2001WWW.NASPA.COM

1. if sysdsn(pds_dsname) <> “OK” then do
2.    say “Error:” pds_dsname sysdsn(pds_dsname)
3.    exit 8
4. end

FIGURE 4: USE OF SYSDSN TO VERIFY THAT A DATASET EXISTS 

1. Call outtrap “trap.”
2. “LISTD” pds_dsname “MEMBERS”
3. Call outtrap “off”
4. do i = 1 to trap.0
5.    if trap.i = “—MEMBERS—” then leave
6.    end

FIGURE 5: USE OF OUTTRAP 

1. i = i + 1
2. do j = i to trap.0
3.    parse value trap.j with  mem
4.    mem = strip(mem)
5.    say “Checking Member:” 
6.    “Alloc f(xxin) ds(‘“dsname”(“mem”)’) shr reuse”
7.    “Execio * diskr xxin (finis stem in.”
8.    “Free  f(xxin)”
9.    hit = 0
10. do z = 1 to in.0
11.    if pos(string,in.z) > 0 then hit = 1
12. end
13. if hit = 1 then
14.    say “Found in Member:” mem
15. end

FIGURE 6: THE ACTUAL CODE PROCESS 


