id you know that there has been
open source software available in
the mainframe environment since

Packaging z/0S Open Source rame e
(and other) Software for 705 (and_probably before) programmers

shared their code, including the source, first
E I E[:tl‘ﬂ“ i E D i Stri h u.l i u“ on card decks (remember those 80 column

cards?), then on tape individually and in col-
lections. Eventually code was shared via the
World Wide Web and CD-ROM. I remember
from 1977 the SHARE MVT Mods Tapes.
Later came the Connecticut Bank and Trust

Learn how to package z/0S software from Lionel Dyck. This tech-
nique will also work for any package that you want to distribute
electronically. Although there are many ways to package your
code, this article focuses on one specific technique that Lionel Casinghino on tape and now maintained by Sam

finds helpfu" Golob and Sam Knutson on tape, CD-ROM,
and on the Web). Today you will find collec-

tape (created and maintained by Arnold

tions of open source tools (and toys) from
individuals and organizations. I even have

By Lionel B. Dyck

contributed my own source to the CBT virtual
tape (http://www.cbttape.org) and have posted on
my own Web site (http://www.lbdsoftware.com).
This sharing of open source is not unique to
z/OS, as there is also a long history of open
source sharing in the z/VM community.

The reason for this article is because I've
been asked how to package code for sharing.
This technique will also work for any package
that you want to distribute electronically.
There are a lot of options available to you to
package your code. This article will present a
technique that I have used for many of the
packages that I’ve shared.

BUILDING THE PACKAGE

The assumption is that your package has
multiple elements. That being the case, the
first thing that I will do is to create a parti-
tioned data set (PDS) using RECFM=FB and
LRECL=80.

In this PDS, I create a member I name

$DOC. This member contains a brief descrip-
tion of the package and a description of the
other members of the PDS that will be found in
it when we are finished building the package.
Let’s assume that the tool you wish to share
has several REXX Execs and some ISPF Panels.
For the Execs and Panels, we will use both
the TSO Transmit and SMCOPY commands
to combine all of the individual members into
a member of the PDS. See FIGURE 1 for a sam-
ple REXX Exec to make the desired package.
The TSO Transmit command, which has
an alias of XMIT, is used because it will
convert one or more members of a parti-
tioned data set, as well as a sequential data
set, into a format that will retain the original
contents including directory information

February 2004 Technical Enterprises, ion of this document without permission is prohibited.

and characters which could be corrupted
during a file transfer. The SMCOPY com-
mand is used to copy the resulting data set
created by the TSO Transmit command into
a member of our package partitioned dataset
since the TSO Transmit command is
restricted to creating a sequential output
data set.

If the package contains a large number of
elements, you may want to create unique par-
titioned data sets for each element type, in
which case, the TSO Transmit command
demonstrated here does not require the MEM-
BERS option, as the default is to include all
members of a partitioned data set.

First the TSO Transmit command to create
a temporary sequential data set:

XMIT X.Y DS(rexx.exec) OUTDS(temp.xmit)
MEMBERS (one two three) NOLOG

Where:

X.Y are used as a generic
nodename.userid for TSO Transmit,
which requires a nodename.userid. Since
the output is to a data set, this field can
be anything you want.

rexx.exec is the name of the REXX Exec
library where the REXX members are.
temp.xmit is the data set name of a
temporary data set that will be created
by the XMIT command

one two three are the member names of
the REXX members

Next the SMCOPY command to copy the
temporary sequential data set into a member
of the PDS:

SMCOPY EDS(temp.xmit) TDS(pds(EXEC))
NOTRANS

Where:

temp.xmit is the data set name of the
temporary data set created by the XMIT
command

pds is the data set name of the
partitioned data set

NOTRANS is required to prevent
SMCOPY from doing any form of
translation on the copied file.

At this point, repeat these two commands
for the Panels library and members with a
member name of PANELS in the PDS.

The packaging is now almost complete. You
should now have three members within your
PDS: $DOC, EXEC and PANELS, with the
EXEC and PANELS members in TSO
Transmit format.

©2004 Technical Enterprises, Inc. Reproduction of this document without permission is prohibited.

/* rexx */

“xmit x.y ds(rexx.exec) outds(temp.xmit) members(one two three) nolog”
“smcopy fds(temp.xmit) tds(pkg.pds(exec) notrans”

“delete temp.xmit”

“xmit x.y ds(ispf.panels) outds(temp.xmit) members(one two three) nolog’
“smcopy fds(temp.xmit) tds(pkg.pds(panels) notrans”

“delete temp.xmit”

“xmit x.y ds(pkg.pds) outds(pkg.xmit) nolog”

s

/* this rexx exec is expected to be invoked by the EXEC command
thus:
EXec ‘dsname(RECEIVE)’

Prompting will occur for hlgq and optional volser.

and it will then issue the TSO RECEIVE command for the
the following members to create these new data sets:

Member Dataset
EXEC h1q.EXEC and
PANELS h1q.PANELS

You will then need to copy these datasets/members into
datasets for production use.

After these data sets are created several of the members
of this install data set will be browsed.
*/

parse source x1 x2 x3 x4 dsn .
X = PROMPT(“ON”) /* enable prompting */

say “Enter desired hlg for target data sets”,
“(default is” sysvar(“syspref”)”.package.NEW):”

pull hlq
hlq = strip(hlq)
if hlg = “” then hlg = sysvar(“syspref”)”.package.NEW”

say “Enter optional volser for target data sets”,
“default is to allow standard allocation to”,
“find a volume.”

pull volser

volser = strip(volser)

“ ”»

if volser <> “” then vol = “vol(“volser”)

else vol = «~

Say “Using HLQ:” hlg
if vol <> “” then
Say “Using Volser:’

s

volser
queue “dsn(‘“h1g”.exec’)” vol
“Receive inds(‘“dsn”(exec)’)”

queue “dsn(*“h1g”.panels’)” vol
“Receive inds(‘“dsn”(panels)’)”

if sysvar(‘sysispf’) <> “ACTIVE” then exit
Address ISPEXEC

“Browse dataset(‘“dsn”($doc)’)”

“Browse dataset(‘“dsn”(changes)’)”

At this point, I like to create a member with
additional documentation if the tool is moder-
ately complex and another member I call

CHANGES to document the change history original package).

Technical Support |

for the package (assuming that you will be
making changes to this package over time
and sharing the changes as you shared the

Next, I recommend the creation of a
RECEIVE member (see FIGURE 2), which
those planning to use the package can use to
rebuild the EXEC and PANELS libraries. This
RECEIVE member is a REXX exec that will
prompt the user for a high-level qualifier for
the EXEC and PANELS libraries and an
optional volser. It will then issue the TSO
RECEIVE command for both the EXEC and
PANELS members to create EXEC and
PANELS partitioned data sets. After doing the
RECEIVE processing, the $DOC and
CHANGES members are browsed using ISPF
Browse if the RECEIVE member was execut-
ed under ISPF. The RECEIVE member and
usage should be documented in the $DOC
member of the PDS so that the receiver of the
package will know that it is there and how to
use it.

The last step in packaging is to convert the
PDS into a sequential data set that can be
e-mailed or posted on a Web site. This is done
using the TSO Transmit command thus:

XMIT X.Y DS(pds) OUTDS (package.xmit)
NOLOG

Notice that in FIGURE 1 that the Make
REXX Exec executes all of the necessary

Technical Support |

commands to build the find package in TSO
Transmit format.

The package.xmit now should be downloaded
to your workstation in binary format and can
then be zipped to reduce the file size and then
e-mailed or uploaded to a Web site. I also rec-
ommend that you consider submitting your
package to the CBT site (http://www.cbttape.org)
for sharing with a worldwide audience.

USING THE PACKAGE
DATA SET

When someone receives your package, they
have to do a few things to use it.

First, they must unzip the file if it was
received in zip format. Then the xmit file must
be uploaded to their z/OS system in binary
format into a sequential data set allocated with
RECFM=FB and LRECL=80. FIGURE 3
demonstrates using the FTP command from a
workstation to upload the file.

After the file is uploaded, the user must then
use the TSO RECEIVE command and convert
the xmit file back into the package partitioned
data set:

RECEIVE INDS(upload.data.set)

C:>cd download

C:\download>ftp zos.host

User: enter userid

Password: enter your password
ftp>bin

ftp>quote site recfm=fb Trecl=80
ftp>cd temp

ftp>put package.xmit

ftp>quit

Then the user should read the $DOC member
and execute the RECEIVE member.

NaSPA member Lionel B. Dyck is a z/OS systems
programmer for a large health maintenance
organization in California. He has been in sys-
tems programming since 1972 and is an active
participant at SHARE. lionel.b.dyck@kp.org is his
e-mail address.

©2004 Technical Enterprises, Inc. Reproduction of this document without permission is prohibited.

